Learn R Programming

circular (version 0.5-1)

kuiper.test: Kuiper's Test

Description

Performs Kuiper's one-sample test of uniformity on the circle.

Usage

kuiper.test(x, alpha=0)
# S3 method for kuiper.test
print(x, digits = 4, ...)

Value

A list with the statistic and alpha value.

Arguments

x

a vector. The object is coerced to class circular.

alpha

significance level of the test. Possible levels are 0.15, 0.1, 0.05, 0.025, 0.01. Alpha may be omitted or set to zero, in which case a range for the p-value of the test will be printed.

digits

integer indicating the precision to be used.

...

further arguments passed to or from other methods.

Author

Claudio Agostinelli and Ulric Lund

Details

Kuiper's test statistic is a rotation-invariant Kolmogorov-type test statistic. The critical values of a modified Kuiper's test statistic are used according to the tabulation given in Stephens (1970).

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, Section 7.2, World Scientific Press, Singapore.

Stephens, M. (1970). Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables. Journal of the Royal Statistical Society, B32, 115-122.

See Also

range.circular, rao.spacing.test, rayleigh.test and watson.test

Examples

Run this code
# Generate data from the uniform distribution on the circle.
data <- circular(runif(100, 0, 2*pi))
kuiper.test(data)
# Generate data from the von Mises distribution.
data <- rvonmises(n=100, mu=circular(0), kappa=3)
kuiper.test(data, alpha=0.01)

Run the code above in your browser using DataLab