# NOT RUN {
data(HsSP)
data(drc)
timeRange <- 54.5
idx <- order(drc)
drc <- drc[idx]
Data <- HsSP[idx]
set.seed(1234)
Data <- Data + runif(length(Data), -1e-4, 1e-4)
thetaVec <- 1:360
data(thresholdExampleML) # loads threshold example
thrResultML <- thresholdExampleML
lambda <- 100
kappa <- 40
thrPerObs <- thrResultML[drc]
excess <- Data - thrPerObs
drcExcess <- drc[excess>0]
excess <- excess[excess>0]
# }
# NOT RUN {
splineFit <- SplineML(excesses = excess, drc = drcExcess, nBoot = 30,
numIntKnots = 16, lambda=lambda, kappa=kappa, numCores=2)
xiBoot <- splineFit$xi
sigBoot <- splineFit$sig
PlotParamEstim(bootEstimates=xiBoot, thetaGrid=0:360, ylab=bquote(hat(xi)),
alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2)
PlotParamEstim(bootEstimates=sigBoot, thetaGrid=0:360, ylab=bquote(hat(sigma)),
alpha=0.05, ylim=NULL, cex.axis=15, cex.lab=2, thrWidth=2)
h <- 60 # needed for calculating local probability of exceedances
RLBoot <- CalcRLsplineML(Data=Data, drc=drc, xiBoot=xiBoot, sigBoot=sigBoot, h=h,
TTs=c(100, 10000), thetaGrid=thetaVec,
timeRange=timeRange, thr=thrResultML)
# 100-year level
PlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc,
TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=NULL,
pointSize=1, cex.axis=15, cex.lab=2, thrWidth=2)
PolarPlotRL(RLBootList=RLBoot, thetaGrid=thetaVec, Data=Data, drc=drc,
TTs=c(100, 10000), whichPlot=1, alpha=0.05, ylim=c(0, 25),
pointSize=4, fontSize=12, lineWidth=2)
# }
# NOT RUN {
## See also examples in vignette:
# vignette("splineML", package = "circularEV")
# }
Run the code above in your browser using DataLab