# NOT RUN {
# Load a test dataset.
data(PimaIndiansDiabetes2, package = "mlbench")
# Check for missing values.
colSums(is.na(PimaIndiansDiabetes2))
# Impute missing data and add missingness indicators.
# Don't impute the outcome though.
result = impute_missing_values(PimaIndiansDiabetes2, skip_vars = "diabetes")
# Confirm we have no missing data.
colSums(is.na(result$data))
#############
# K-nearest neighbors imputation
result2 = impute_missing_values(PimaIndiansDiabetes2, type = "knn",
skip_vars = "diabetes")
# Confirm we have no missing data.
colSums(is.na(result2$data))
# }
Run the code above in your browser using DataLab