Learn R Programming

class (version 7.3-23)

multiedit: Multiedit for k-NN Classifier

Description

Multiedit for k-NN classifier

Usage

multiedit(x, class, k = 1, V = 3, I = 5, trace = TRUE)

Value

Index vector of cases to be retained.

Arguments

x

matrix of training set.

class

vector of classification of training set.

k

number of neighbours used in k-NN.

V

divide training set into V parts.

I

number of null passes before quitting.

trace

logical for statistics at each pass.

References

P. A. Devijver and J. Kittler (1982) Pattern Recognition. A Statistical Approach. Prentice-Hall, p. 115.

Ripley, B. D. (1996) Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

condense, reduce.nn

Examples

Run this code
tr <- sample(1:50, 25)
train <- rbind(iris3[tr,,1], iris3[tr,,2], iris3[tr,,3])
test <- rbind(iris3[-tr,,1], iris3[-tr,,2], iris3[-tr,,3])
cl <- factor(c(rep(1,25),rep(2,25), rep(3,25)), labels=c("s", "c", "v"))
table(cl, knn(train, test, cl, 3))
ind1 <- multiedit(train, cl, 3)
length(ind1)
table(cl, knn(train[ind1, , drop=FALSE], test, cl[ind1], 1))
ntrain <- train[ind1,]; ncl <- cl[ind1]
ind2 <- condense(ntrain, ncl)
length(ind2)
table(cl, knn(ntrain[ind2, , drop=FALSE], test, ncl[ind2], 1))

Run the code above in your browser using DataLab