Learn R Programming

classiFunc

Overview

The classiFunc package implements methods for functional data classification. The main functions of this package are classiKnn, a k nearest neighbor estimator for functional data, and classiKernel, a kernel estimator for functional data. The package uses efficiently implemented semimetrics to create the distance matrix of the functional observations in the function computeDistMat.

Using classiFunc

For installation instructions, see below. A hands on introduction to can be found in the vignette. Details on specific functions are in the reference manual.

Issues & Feature Requests

For issues, bugs, feature requests etc. please use the Github Issues. Input is always welcome.

Installation

You can install the current classiFunc version from CRAN with:

install.packages("classiFunc")

or the latest patched version from Github with:

# install.packages("devtools")
devtools::install_github("maierhofert/classiFunc")

Copy Link

Version

Install

install.packages('classiFunc')

Monthly Downloads

33

Version

0.1.1

License

GPL-3

Issues

Pull Requests

Stars

Forks

Last Published

April 16th, 2018

Functions in classiFunc (0.1.1)

DTI

Diffusion Tensor Imaging: tract profiles and outcomes
DTI_original

Diffusion Tensor Imaging: tract profiles and outcomes
Growth

Berkeley Growth Study Data (regular grid)
Growth_irregular

Berkeley Growth Study Data
classiKernel

Create a kernel estimator for functional data classification
kerChoices

List the names of all implemented kernel functions
metricChoices

List the names of all metrics
classiFunc

The classiFunc package
Phoneme

Phonetic Time Series.
ArrowHead

The shape of arrow heads.
BeetleFly

Beetle/Fly Data
classiKnn

Create a knn estimator for functional data classification.
computeDistMat

Compute a distance matrix for functional observations
parallelComputeDistMat

Paralleize computing a distance matrix for functional observations
predict.classiKernel

predict a classiKernel object
fdataTransform

Create a preprocessing pipeline function
predict.classiKnn

predict a classiKnn object