Learn R Programming

classify (version 1.3)

gpcm.rc: IRT Derived Predicted Conditional Number Correct Score Distribution

Description

Obtains the predicted number-correct score distribution from parameters estimated under the Generalised Partial Credit Model.

Usage

gpcm.rc(beta=NULL,theta=NULL,cats=NULL,alpha=NULL)

Arguments

beta
Item threshold parameters. These should be a matrix, with rows for items and columns for categories. Following Muraki, the first column should be zero.
theta
Theta parameters
cats
Vector of item categories. A dichotomous item is specified as two categories.
alpha
Discrimination parameters. If none are specified the model will default to the Partial Credit Model.

Value

Details

The beta parameters are defined as the intersection points of adjacent category information functions. There should be the same number of beta parameters as categories, with the first column, following Muraki, specified as zero.

Examples

Run this code

beta <- matrix(c(0,-1.586,-3.798),nrow=1,ncol=3)
theta <- 0.674
cats <- 3
alpha <- 1
gpcm.rc(beta,theta,cats,alpha)

Run the code above in your browser using DataLab