training <- c("User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,c,d",
"User3,h,i,c,i,c,p,c,c,p,c,c,i,d",
"User4,h,c,c,p,p,c,p,p,p,i,p,o",
"User5,i,h,c,c,p,p,c,p,c,d",
"User6,i,h,c,c,p,p,c,p,c,o",
"User7,i,h,c,c,p,p,c,p,c,d",
"User8,i,h,c,c,p,p,c,p,c,d,o")
test <- c(
"User1,h,c,c,p,c,h,c,p,p,c,p,p,o",
"User2,i,c,i,c,c,c,d",
"User3,h,i,c,i,c,p,c,c,p,c,c,i,d"
)
trainingCLS <- as.clickstreams(training, header = TRUE)
testCLS <- as.clickstreams(test, header = TRUE)
clusters <- getConsensusClusters(trainingCLS, testCLS, maxIterations=5,
optimalProbMean=0.40, range = 0.70, centresMin = 2,
clusterCentresRange = 0, order = 1, takeHighest = FALSE,
verbose = FALSE)
markovchains <- fitMarkovChains(clusters)
startPattern <- new("Pattern", sequence = c("i", "h", "c", "p"))
mc <- getOptimalMarkovChain(startPattern, markovchains, clusters)
predict(mc, startPattern)
Run the code above in your browser using DataLab