Learn R Programming

clikcorr (version 1.0)

splot: Graphical function for visualizing bivariate censored and/or missing data

Description

Generates matrix of scatter plots for bivariate data with different types of censoring and missing.

Usage

splot(data, lower.list, upper.list, ti =ifelse(length(lower.list)>2, paste("Scatter plots of", lower.list[1], "to", lower.list[length(lower.list)]), paste("Scatter plot of", lower.list[1], "and", lower.list[2])), legend = TRUE, cex = 1.5, ...)

Arguments

data
a data frame name.
lower.list
the lower bounds names in the data frame of the variables between which the scatter plots are to be generated.
upper.list
the upper bounds names in the data frame of the variables between which the scatter plots are to be generated.
ti
figure title.
legend
figure legend.
cex
simbol sizes.
...
not used.

Details

Generates matrix of scatter plots for bivariate data with different types of censoring and missing.

References

Yanming Li, Kerby Shedden, Brenda W. Gillespie and John A. Gillespie (2016). Calculating Profile Likelihood Estimates of the Correlation Coefficient in the Presence of Left, Right or Interval Censoring and Missing Data.

Examples

Run this code

data(ND)
logND <- log(ND)

splot(logND, c("t1_OCDD", "t1_TCDF", "t1_HxCDF_234678"),
 c("t2_OCDD", "t2_TCDF", "t2_HxCDF_234678"), ti="scatter plot matrix")

splot(logND, c("t1_OCDD", "t1_TCDF", "t1_HxCDF_234678"),
 c("t2_OCDD", "t2_TCDF", "t2_HxCDF_234678"), ti="scatter plot matrix", bg="gold")

Run the code above in your browser using DataLab