Learn R Programming

climtrends (version 1.0.6)

CumulativeDeviations: cumulative deviations test (parametric test for step jump in mean)

Description

CumulativeDeviations returns the result (Q) of the cumulative deviations test (parametric test for step jump in mean) applied to a time series. CumulativeDeviationsQR return Q, R and abs(Q)/sqrt(N).

Usage

CumulativeDeviations(dataSeries)

Arguments

dataSeries
vector with climate data

Value

The result of the cumulative deviations test.

Source

Chiew F. and Siriwardena L., 2005 CRC for Catchment Hydrology Trend 1.0.2 User Guide, chapter 4.2.11 Rank Difference Test, pp. 21 http://www.toolkit.net.au/Tools/TREND/documentation Kundzewicz, Z.W. and Robson, A., 2000 Detecting Trend and Other Changes in Hydrological Data. World Climate Program - Water, WMO/UNESCO, WCDMP-45, WMO/TD 1013, Geneva, 157 pp. Grayson, R.B., Argent, R.M., Nathan, R.J., McMahon, T.A. and Mein, R., 1996 Hydrological Recipes: Estimation Techniques in Australian Hydrology. Cooperative Research Centre for Catchment Hydrology, Australia, 125 pp.

References

Chiew F. and Siriwardena L., 2005 CRC for Catchment Hydrology Trend 1.0.2 User Guide, chapter 4.2.11 Rank Difference Test, pp. 21 http://www.toolkit.net.au/Tools/TREND/documentation

Kundzewicz, Z.W. and Robson, A., 2000 Detecting Trend and Other Changes in Hydrological Data. World Climate Program - Water, WMO/UNESCO, WCDMP-45, WMO/TD 1013, Geneva, 157 pp.

Grayson, R.B., Argent, R.M., Nathan, R.J., McMahon, T.A. and Mein, R., 1996 Hydrological Recipes: Estimation Techniques in Australian Hydrology. Cooperative Research Centre for Catchment Hydrology, Australia, 125 pp.

Examples

Run this code
# cumulative deviations for Turin 1961-2003
cdTurin<- CumulativeDeviations(yearly.average.temperature.Turin.Milan[,2])

# cumulative deviations for Milan 1961-2003
cdMilan<- CumulativeDeviations(yearly.average.temperature.Turin.Milan[,3])

plot(1961:2003,cdTurin,type='l',col='cyan',ylim=c(0,15),
main='Cumulative deviations 1961-2003',xlab='Years',ylab='C.D.')
par(new=TRUE)
plot(1961:2003,cdMilan,type='l',col='magenta',ylim=c(0,15),xlab='',ylab='')
legend("top",c('Turin','Milan'),text.col=c('cyan','magenta'))

Run the code above in your browser using DataLab