Learn R Programming

clues (version 0.6.2.2)

plotClusters: Scatter Plots of Clusters in Specified Dimensions

Description

Scatter plots of clusters in specified dimensions. If more than two dimensions are specified, pair-wise scatter plots will be plotted.

Usage

plotClusters(y, mem, plot.dim = NULL,
      xlab = NULL, ylab = NULL,
      xlim = NULL, ylim = NULL, cex = NULL, 
      cex.points = 1, ...)

Arguments

y

data matrix with rows being a collection of observations and columns being a list of variables.

mem

vector of the cluster membership of data points. The cluster membership takes values: \(1\), \(2\), \(\ldots\), \(g\), where \(g\) is the estimated number of clusters.

plot.dim

specifies the dimensions to be plot. If plot.dim is NULL, then pair-wise scatter plots of all dimensions will be plotted.

xlab

a title for the x axis. If xlab = NULL, then xlab will be set to be “”.

ylab

a title for the y-axis. If ylab = NULL, then ylab will be set to be “”.

xlim

range of x-axis. If xlim = NULL, then xlim will be set to be the range of the matrix y in the dimensions specified by plot.dim.

ylim

range of y-axis. If ylim = NULL, then ylim will be set to be the range of the matrix y in the dimensions specified by plot.dim.

cex

A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default. (see par). If cex = NULL, then cex will be set to be 2.

cex.points

A numerical value indicating the pointsize for points in clusters 2, 3, ..., g. Note points in cluster 1 won't be affected. This will help to visualize the overlap among clusters.

...

graphical parameters (see par).

References

Wang, S., Qiu, W., and Zamar, R. H. (2007). CLUES: A non-parametric clustering method based on local shrinking. Computational Statistics & Data Analysis, Vol. 52, issue 1, pages 286-298.

Examples

Run this code
# NOT RUN {
    # Maronna data set
    data(Maronna)

    # data matrix
    maronna <- Maronna$maronna

    # cluster membership
    maronna.mem <- Maronna$maronna.mem
    
    plotClusters(maronna, maronna.mem)
# }

Run the code above in your browser using DataLab