Learn R Programming

cluster.datasets (version 1.0-1)

airline.distances.1966: Hartigan (1975) Airline Distance Between Principal Cities of the World

Description

The table contains the airline distances in hunds of miles between the principal cities of the world. This is Table 11.1 in Chapter 11 of Hartigan (1975) on page 192.

Usage

data(airline.distances.1966)

Arguments

Format

A data frame with 30 observations on the following 31 variables.
code
a character vector for the cities
AZ
a numeric vector for Azores
BD
a numeric vector for Baghdad
BN
a numeric vector for Berlin
BY
a numeric vector for Bombay
BS
a numeric vector for Buenos Aires
CO
a numeric vector for Cairo
CN
a numeric vector for Capetown
CH
a numeric vector for Chicago
GM
a numeric vector for Guam
HU
a numeric vector for Honolulu
IL
a numeric vector for Istanbul
JU
a numeric vector for Juneau
LN
a numeric vector for London
MA
a numeric vector for Manila
ME
a numeric vector for Melbourne
MY
a numeric vector for Mexico City
ML
a numeric vector for Montreal
MW
a numeric vector for Moscow
NS
a numeric vector for New Orleans
NY
a numeric vector for New York
PY
a numeric vector for Panama City
PS
a numeric vector for Paris
RO
a numeric vector for Rio De Janeiro
RE
a numeric vector for Rome
SF
a numeric vector for San Francisco
SO
a numeric vector for Santiago
SE
a numeric vector for Seattle
SI
a numeric vector for Shanghai
SY
a numeric vector for Sydney
TO
a numeric vector for Tokyo

Source

The World Almanac (1966). SPAETH2 Cluster Analysis Datasets http://people.sc.fsu.edu/~jburkardt/datasets/spaeth2/spaeth2.html

Details

Hartigan uses this data set with the single linkage algorithm.

References

Hartigan, J. A. (1975). Clustering Algorithms, John Wiley, New York.

Examples

Run this code
data(airline.distances.1966)

Run the code above in your browser using DataLab