# NOT RUN {
nsubjects.example <- list(c(20,20,20,25), c(15, 20, 20, 21), c(17, 20, 21))
means.example <- c(22, 21, 21.5)
sigma_sq.example <- c(1, 1, 0.9)
sigma_b_sq.example <- c(0.1, 0.15, 0.1)
multi.cps.normal.models <- cps.ma.normal(nsim = 100,
narms = 3,
nsubjects = nsubjects.example,
means = means.example,
sigma_sq = sigma_sq.example,
sigma_b_sq = sigma_b_sq.example,
alpha = 0.05,
quiet = FALSE, method = 'glmm',
seed = 123, cores = "all",
lowPowerOverride = FALSE,
poorFitOverride = FALSE,
optmethod = "nlm")
multi.cps.normal <- cps.ma.normal(nsim = 100, narms = 3,
nclusters = c(10,11,10), nsubjects = 25,
means = c(1, 0.25, 1.75),
sigma_sq = c(1.2, 1, 1.9),
sigma_b_sq = c(0.5, 1, 0.75),
quiet = FALSE, ICC=NULL, method = 'glmm',
allSimData = FALSE, seed = 123,
poorFitOverride = TRUE,
cores = NULL,
optmethod = "nlminb")
multi.cps.normal.simple <- cps.ma.normal(nsim = 100, narms = 3,
nclusters = 5, nsubjects = 10,
means = c(22.0, 22.5, 22.9),
sigma_sq = 0.2,
sigma_b_sq = 0.2, alpha = 0.05,
quiet = FALSE, ICC=NULL, method = 'glmm',
allSimData = FALSE, seed = 123,
poorFitOverride = TRUE, cores="all",
optmethod = "NLOPT_LN_NELDERMEAD")
# }
Run the code above in your browser using DataLab