clusterSim (version 0.51-5)
Searching for Optimal Clustering Procedure for a Data Set
Description
Distance measures (GDM1, GDM2, Sokal-Michener, Bray-Curtis, for symbolic interval-valued data), cluster quality indices (Calinski-Harabasz, Baker-Hubert, Hubert-Levine, Silhouette, Krzanowski-Lai, Hartigan, Gap, Davies-Bouldin), data normalization formulas (metric data, interval-valued symbolic data), data generation (typical and non-typical data), HINoV method, replication analysis, linear ordering methods, spectral clustering, agreement indices between two partitions, plot functions (for categorical and symbolic interval-valued data).
(MILLIGAN, G.W., COOPER, M.C. (1985) ,
HUBERT, L., ARABIE, P. (1985) ,
RAND, W.M. (1971) ,
JAJUGA, K., WALESIAK, M. (2000) ,
MILLIGAN, G.W., COOPER, M.C. (1988) ,
JAJUGA, K., WALESIAK, M., BAK, A. (2003) ,
DAVIES, D.L., BOULDIN, D.W. (1979) ,
CALINSKI, T., HARABASZ, J. (1974) ,
HUBERT, L. (1974) ,
TIBSHIRANI, R., WALTHER, G., HASTIE, T. (2001) ,
BRECKENRIDGE, J.N. (2000) ,
WALESIAK, M., DUDEK, A. (2008) ).