# Generate simple test dataset
groupCounts <- c(50, 10, 40, 60)
means <- c(-1.5,1.5)
testData <- generateTestData_2D(groupCounts, means)
datasets <- testData$data
# Fit the model
# 1. specify number of clusters
clusterCounts <- list(global=10, context=c(3,3))
# 2. Run inference
# Number of iterations is just for demonstration purposes, use
# a larger number of iterations in practice!
results <- contextCluster(datasets, clusterCounts,
maxIter = 10, burnin = 5, lag = 1,
dataDistributions = 'diagNormal',
verbose = TRUE)
# Extract only the sampled global assignments
samples <- results$samples
clusters <- plyr::laply(1:length(samples), function(i) samples[[i]]$Global)
coclusteringMatrix(clusters)
Run the code above in your browser using DataLab