Learn R Programming

clv (version 0.3-2.1)

clv.Dis: Total separation between clusters - Internal Measure

Description

Function computes total separation between clusters.

Usage

clv.Dis(cluster.center)

Arguments

cluster.center
numeric matrix or data.frame where columns correspond to variables and rows cluster centers.

Value

As result Dis value is returned.

Details

The definition of total separation between clusters is given by equation:

Dis = (Dmax/Dmin) * sum{forall i in 1:|C|} 1 /( sum{forall j in 1:|C|} ||vi - vj|| )

where:

|C|
- number of clusters,
vi, vj
- centers of clusters i and j,
Dmax
- defined as: max{||vi - vj||: vi,vj - centers of clusters },
Dmin
- defined as: min{||vi - vj||: vi,vj - centers of clusters },

This value is a part of clv.SD and clv.SDbw.

References

M. Haldiki, Y. Batistakis, M. Vazirgiannis On Clustering Validation Techniques, http://citeseer.ist.psu.edu/513619.html

See Also

clv.SD and clv.SDbw

Examples

Run this code
# load and prepare data
library(clv)
data(iris)
iris.data <- iris[,1:4]

# cluster data
agnes.mod <- agnes(iris.data) # create cluster tree 
v.pred <- as.integer(cutree(agnes.mod,5)) # "cut" the tree 

# compute Dis index
scatt <- clv.Scatt(iris.data, v.pred)
dis <- clv.Dis(scatt$cluster.center)

Run the code above in your browser using DataLab