# NOT RUN {
## Non-standard concatenation
.c(a, b, "c d", e == f)
## Variable labels
namlab(wlddev, class = TRUE)
vlabels(wlddev)
vlabels(wlddev) <- vlabels(wlddev)
## Stub-renaming
log_mtc <- add_stub(log(mtcars), "log.")
head(log_mtc)
head(rm_stub(log_mtc, "log."))
rm(log_mtc)
## Setting dimension names of an object
head(setRownames(mtcars))
ar <- array(1:9, c(3,3,3))
setRownames(ar)
setColnames(ar, c("a","b","c"))
setDimnames(ar, c("a","b","c"), which = 3)
setDimnames(ar, list(c("d","e","f"), c("a","b","c")), which = 2:3)
setDimnames(ar, list(c("g","h","i"), c("d","e","f"), c("a","b","c")))
## Checking exact equality of multiple objects
all_identical(iris, iris, iris, iris)
l <- replicate(100, fmean(num_vars(iris), iris$Species), simplify = FALSE)
all_identical(l)
rm(l)
## Missing values
mtc_na <- na_insert(mtcars, 0.15) # Set 15% of values missing at random
fNobs(mtc_na) # See observation count
na_omit(mtc_na) # 12x faster than na.omit(mtc_na)
na_omit(mtc_na, na.attr = TRUE) # Adds attribute with removed cases, like na.omit
na_omit(mtc_na, cols = c("vs","am")) # Removes only cases missing vs or am
na_omit(qM(mtc_na)) # Also works for matrices
na_omit(mtc_na$vs, na.attr = TRUE) # Also works with vectors
na_rm(mtc_na$vs) # For vectors na_rm is faster ...
rm(mtc_na)
# }
Run the code above in your browser using DataLab