recode_char(c("a","b","c"), a = "b", b = "c")
recode_char(month.name, ber = NA, regex = TRUE)
mtcr <- recode_num(mtcars, `0` = 2, `4` = Inf, `1` = NaN)
replace_inf(mtcr)
replace_inf(mtcr, replace.nan = TRUE)
replace_outliers(mtcars, c(2, 100)) # Replace all values below 2 and above 100 w. NA
replace_outliers(mtcars, c(2, 100), value = "clip") # Clipping outliers to the thresholds
replace_outliers(mtcars, 2, single.limit = "min") # Replace all value smaller than 2 with NA
replace_outliers(mtcars, 100, single.limit = "max") # Replace all value larger than 100 with NA
replace_outliers(mtcars, 2) # Replace all values above or below 2 column-
# standard-deviations from the column-mean w. NA
replace_outliers(fgroup_by(iris, Species), 2) # Passing a grouped_df, pseries or pdata.frame
# allows to remove outliers according to
# in-group standard-deviation. see ?fscale
Run the code above in your browser using DataLab