Learn R Programming

compositions (version 2.0-2)

cor.acomp: Correlations of amounts and compositions

Description

Computes the correlation matrix in the various approaches of compositional and amount data analysis.

Usage

cor(x,y=NULL,…)
          # S3 method for default
cor(x, y=NULL, use="everything", 
                       method=c("pearson", "kendall", "spearman"),…)
          # S3 method for acomp
cor(x,y=NULL,…,robust=getOption("robust"))
          # S3 method for rcomp
cor(x,y=NULL,…,robust=getOption("robust"))
          # S3 method for aplus
cor(x,y=NULL,…,robust=getOption("robust"))
          # S3 method for rplus
cor(x,y=NULL,…,robust=getOption("robust"))
          # S3 method for rmult
cor(x,y=NULL,…,robust=getOption("robust"))

Arguments

x

a data set, eventually of amounts or compositions

y

a second data set, eventually of amounts or compositions

use

see cor

method

see cor

further arguments to cor e.g. use

robust

A description of a robust estimator. FALSE for the classical estimators. See mean.acomp for further details.

Value

The correlation matrix.

Details

The correlation matrix does not make much sense for compositions.

In R versions older than v2.0.0, cor was defined in package ``base'' instead of in ``stats''. This might produce some misfunction.

See Also

var.acomp

Examples

Run this code
# NOT RUN {
data(SimulatedAmounts)
meanCol(sa.lognormals)
cor(acomp(sa.lognormals5[,1:3]),acomp(sa.lognormals5[,4:5]))
cor(rcomp(sa.lognormals5[,1:3]),rcomp(sa.lognormals5[,4:5]))
cor(aplus(sa.lognormals5[,1:3]),aplus(sa.lognormals5[,4:5]))
cor(rplus(sa.lognormals5[,1:3]),rplus(sa.lognormals5[,4:5]))
cor(acomp(sa.lognormals5[,1:3]),aplus(sa.lognormals5[,4:5]))
# }

Run the code above in your browser using DataLab