Learn R Programming

conjoint (version 1.41)

caEncodedDesign: Function caEncodedDesign encodes full or fractional factorial design

Description

Function caEncodedDesign encodes full or fractional factorial design. Function converts design of experiment to matrix of profiles.

Usage

caEncodedDesign(design)

Arguments

design

design of experiment returned by caFactorialDesign function

References

Bak A., Bartlomowicz T. (2012), Conjoint analysis method and its implementation in conjoint R package, [In:] Pociecha J., Decker R. (Eds.), Data analysis methods and its applications, C.H.Beck, Warszawa, p.239-248.

Bak A. (2009), Analiza Conjoint [Conjoint Analysis], [In:] Walesiak M., Gatnar E. (Eds.), Statystyczna analiza danych z wykorzystaniem programu R [Statistical Data Analysis using R], Wydawnictwo Naukowe PWN, Warszawa, p. 283-317.

Green P.E., Srinivasan V. (1978), Conjoint Analysis in Consumer Research: Issues and Outlook, "Journal of Consumer Research", September, 5, p. 103-123.

SPSS 6.1 Categories (1994), SPSS Inc., Chicago.

See Also

caFactorialDesign and caRecreatedDesign

Examples

Run this code
# NOT RUN {
#Example 1
library(conjoint)
experiment<-expand.grid(
price=c("low","medium","high"),
variety=c("black","green","red"),
kind=c("bags","granulated","leafy"),
aroma=c("yes","no"))
design=caFactorialDesign(data=experiment,type="orthogonal")
print(design)
code=caEncodedDesign(design)
print(code)
print(cor(code))
write.csv2(design,file="orthogonal_factorial_design.csv",row.names=FALSE)
write.csv2(code,file="encoded_orthogonal_factorial_design.csv",row.names=FALSE)
# }

Run the code above in your browser using DataLab