# NOT RUN {
library(contextual)
library(data.table)
library(splitstackshape)
library(RCurl)
# Import MovieLens ml-10M
# Info: https://d1ie9wlkzugsxr.cloudfront.net/data_movielens/ml-10M/README.html
movies_dat <- "http://d1ie9wlkzugsxr.cloudfront.net/data_movielens/ml-10M/movies.dat"
ratings_dat <- "http://d1ie9wlkzugsxr.cloudfront.net/data_movielens/ml-10M/ratings.dat"
movies_dat <- readLines(movies_dat)
movies_dat <- gsub( "::", "~", movies_dat )
movies_dat <- paste0(movies_dat, collapse = "\n")
movies_dat <- fread(movies_dat, sep = "~", quote="")
setnames(movies_dat, c("V1", "V2", "V3"), c("MovieID", "Name", "Type"))
movies_dat <- splitstackshape::cSplit_e(movies_dat, "Type", sep = "|", type = "character",
fill = 0, drop = TRUE)
movies_dat[[3]] <- NULL
ratings_dat <- RCurl::getURL(ratings_dat)
ratings_dat <- readLines(textConnection(ratings_dat))
ratings_dat <- gsub( "::", "~", ratings_dat )
ratings_dat <- paste0(ratings_dat, collapse = "\n")
ratings_dat <- fread(ratings_dat, sep = "~", quote="")
setnames(ratings_dat, c("V1", "V2", "V3", "V4"), c("UserID", "MovieID", "Rating", "Timestamp"))
all_movies <- ratings_dat[movies_dat, on=c(MovieID = "MovieID")]
all_movies <- na.omit(all_movies,cols=c("MovieID", "UserID"))
rm(movies_dat,ratings_dat)
all_movies[, UserID := as.numeric(as.factor(UserID))]
count_movies <- all_movies[,.(MovieCount = .N), by = MovieID]
top_50 <- as.vector(count_movies[order(-MovieCount)][1:50]$MovieID)
not_50 <- as.vector(count_movies[order(-MovieCount)][51:nrow(count_movies)]$MovieID)
top_50_movies <- all_movies[MovieID %in% top_50]
# Create feature lookup tables - to speed up, MovieID and UserID are
# ordered and lined up with the (dt/matrix) default index.
# Arm features
# MovieID of top 50 ordered from 1 to N:
top_50_movies[, MovieID := as.numeric(as.factor(MovieID))]
arm_features <- top_50_movies[,head(.SD, 1),by = MovieID][,c(1,6:24)]
setorder(arm_features,MovieID)
# User features
# Count of categories for non-top-50 movies normalized per user
user_features <- all_movies[MovieID %in% not_50]
user_features[, c("MovieID", "Rating", "Timestamp", "Name"):=NULL]
user_features <- user_features[, lapply(.SD, sum, na.rm=TRUE), by=UserID ]
user_features[, total := rowSums(.SD, na.rm = TRUE), .SDcols = 2:20]
user_features[, 2:20 := lapply(.SD, function(x) x/total), .SDcols = 2:20]
user_features$total <- NULL
# Add users that were not in the set of non-top-50 movies (4 in 10m dataset)
all_users <- as.data.table(unique(all_movies$UserID))
user_features <- user_features[all_users, on=c(UserID = "V1")]
user_features[is.na(user_features)] <- 0
setorder(user_features,UserID)
rm(all_movies, not_50, top_50, count_movies)
# Contextual format
top_50_movies[, t := .I]
top_50_movies[, sim := 1]
top_50_movies[, agent := "Offline"]
top_50_movies[, choice := MovieID]
top_50_movies[, reward := ifelse(Rating <= 4, 0, 1)]
setorder(top_50_movies,Timestamp,Name)
# Run simulation
simulations <- 1
horizon <- nrow(top_50_movies)
bandit <- OfflineLookupReplayEvaluatorBandit$new(top_50_movies,
k = 50,
unique_col = "UserID",
shared_lookup = arm_features,
unique_lookup = user_features)
agents <-
list(Agent$new(ThompsonSamplingPolicy$new(), bandit, "Thompson"),
Agent$new(UCB1Policy$new(), bandit, "UCB1"),
Agent$new(RandomPolicy$new(), bandit, "Random"),
Agent$new(LinUCBHybridOptimizedPolicy$new(0.9), bandit, "LinUCB Hyb 0.9"),
Agent$new(LinUCBDisjointOptimizedPolicy$new(2.1), bandit, "LinUCB Dis 2.1"))
simulation <-
Simulator$new(
agents = agents,
simulations = simulations,
horizon = horizon
)
results <- simulation$run()
plot(results, type = "cumulative", regret = FALSE,
rate = TRUE, legend_position = "topleft")
# }
Run the code above in your browser using DataLab