library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)
w <- weights(des_eusilc)
# ratio linearization
T1 = list(value = sum(w*eusilc$eqincome) , lin = eusilc$eqincome )
T2 = list(value = sum(w), lin = rep (1, nrow(eusilc)) )
list_all <- list( T1 = T1, T2 = T2)
lin_R = contrastinf (quote(T1/T2), list_all)
# estimate of the variable eqincome mean
lin_R$value
# se estimate of the variable eqincome mean
SE(svytotal(lin_R$lin, des_eusilc))
# to check, use
svymean (~eqincome, des_eusilc)
# quintile share ratio (qsr) linearization
S20 <- svyisq(~ eqincome, design = des_eusilc, .20)
S20_val <- coef (S20); attributes (S20_val) <- NULL
S20_lin <- attr(S20 , "lin" )
S80 <- svyisq(~ eqincome, design = des_eusilc, .80)
S80_val <- coef (S80); attributes (S80_val) <- NULL
S80_lin <- attr(S80 , "lin" )
SU <- list (value = S80_val, lin = S80_lin )
SI <- list (value = S20_val, lin = S20_lin )
TOT <- list(value = sum( w * eusilc$eqincome) , lin = eusilc$eqincome )
list_all <- list (TOT = TOT, SI = SI, SU = SU )
lin_QSR <- contrastinf( quote((TOT-SU)/SI), list_all)
# estimate of the qsr
lin_QSR$value
# se estimate of the qsr:
SE(svytotal(lin_QSR$lin, des_eusilc))
# to check, use
svyqsr(~eqincome, des_eusilc )
# proportion of income below the quantile .20
list_all <- list (TOT = TOT, SI = SI )
lin_Lor <- contrastinf( quote(SI/TOT), list_all)
# estimate of the proportion of income below the quantile .20
lin_Lor$value
# se estimate
SE(svytotal(lin_Lor$lin,des_eusilc))
Run the code above in your browser using DataLab