Learn R Programming

convey (version 0.2.5)

svyiqalpha: Linearization of a variable quantile

Description

Computes the linearized variable of a quantile of variable.

Usage

svyiqalpha(formula, design, ...)

# S3 method for survey.design svyiqalpha(formula, design, alpha, na.rm = FALSE, ...)

# S3 method for svyrep.design svyiqalpha(formula, design, alpha, na.rm = FALSE, ...)

# S3 method for DBIsvydesign svyiqalpha(formula, design, ...)

Value

Object of class "cvystat", which are vectors with a "var" attribute giving the variance and a "statistic" attribute giving the name of the statistic.

Arguments

formula

a formula specifying the income variable

design

a design object of class survey.design or class svyrep.design from the survey library.

...

arguments passed on to `survey::oldsvyquantile`

alpha

the order of the quantile

na.rm

Should cases with missing values be dropped?

Author

Djalma Pessoa and Anthony Damico

Details

you must run the convey_prep function on your survey design object immediately after creating it with the svydesign or svrepdesign function.

References

Guillaume Osier (2009). Variance estimation for complex indicators of poverty and inequality. Journal of the European Survey Research Association, Vol.3, No.3, pp. 167-195, ISSN 1864-3361, URL https://ojs.ub.uni-konstanz.de/srm/article/view/369.

Jean-Claude Deville (1999). Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203, URL https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X19990024882.

See Also

svyarpr

Examples

Run this code

library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
library(survey)
# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)

svyiqalpha( ~eqincome , design = des_eusilc, .50 )

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)

svyiqalpha( ~eqincome , design = des_eusilc_rep, .50 )

if (FALSE) {

# linearized design using a variable with missings
svyiqalpha( ~ py010n , design = des_eusilc, .50 )
svyiqalpha( ~ py010n , design = des_eusilc , .50, na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyiqalpha( ~ py010n , design = des_eusilc_rep, .50 )
svyiqalpha( ~ py010n , design = des_eusilc_rep ,.50, na.rm = TRUE )

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
	svydesign(
		ids = ~rb030 ,
		strata = ~db040 , 
		weights = ~rb050 ,
		data="eusilc",
		dbname=dbfile,
		dbtype="SQLite"
	)

dbd_eusilc <- convey_prep( dbd_eusilc )

svyiqalpha( ~ eqincome , design = dbd_eusilc, .50 )

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )

}

Run the code above in your browser using DataLab