Learn R Programming

convey (version 1.0.1)

svyjdiv: J-divergence measure

Description

Estimate the J-divergence measure, an entropy-based measure of inequality

Usage

svyjdiv(formula, design, ...)

# S3 method for survey.design svyjdiv( formula, design, na.rm = FALSE, deff = FALSE, linearized = FALSE, influence = FALSE, ... )

# S3 method for svyrep.design svyjdiv( formula, design, na.rm = FALSE, deff = FALSE, linearized = FALSE, return.replicates = FALSE, ... )

# S3 method for DBIsvydesign svyjdiv(formula, design, ...)

Value

Object of class "cvystat", which are vectors with a "var" attribute giving the variance and a "statistic" attribute giving the name of the statistic.

Arguments

formula

a formula specifying the income variable

design

a design object of class survey.design or class svyrep.design from the survey library.

...

future expansion

na.rm

Should cases with missing values be dropped?

deff

Return the design effect (see survey::svymean)

linearized

Should a matrix of linearized variables be returned

influence

Should a matrix of (weighted) influence functions be returned? (for compatibility with svyby)

return.replicates

Return the replicate estimates?

Author

Guilherme Jacob, Djalma Pessoa, and Anthony Damico

Details

you must run the convey_prep function on your survey design object immediately after creating it with the svydesign or svrepdesign function.

This measure only allows for strictly positive variables.

References

Nicholas Rohde (2016). J-divergence measurements of economic inequality. J. R. Statist. Soc. A, v. 179, Part 3 (2016), pp. 847-870. DOI tools:::Rd_expr_doi("10.1111/rssa.12153").

Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy and Atkinson Inequality Indices from Complex Survey Data. DIW Discussion Papers, No.345, URL https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf.

See Also

svygei

Examples

Run this code
library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )

# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep(des_eusilc)

svyjdiv( ~eqincome , design = subset( des_eusilc , eqincome > 0 ) )

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep(des_eusilc_rep)

svyjdiv( ~eqincome , design = subset( des_eusilc_rep , eqincome > 0 ) )

if (FALSE) {

# linearized design using a variable with missings
svyjdiv( ~py010n , design = subset( des_eusilc , py010n > 0 | is.na( py010n ) ) )
svyjdiv( ~py010n , design = subset( des_eusilc , py010n > 0 | is.na( py010n ) ), na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyjdiv( ~py010n , design = subset( des_eusilc_rep , py010n > 0 | is.na( py010n ) ) )
svyjdiv( ~py010n , design = subset( des_eusilc_rep , py010n > 0 | is.na( py010n ) ) , na.rm = TRUE )

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
	svydesign(
		ids = ~rb030 ,
		strata = ~db040 ,
		weights = ~rb050 ,
		data="eusilc",
		dbname=dbfile,
		dbtype="SQLite"
	)

dbd_eusilc <- convey_prep( dbd_eusilc )

svyjdiv( ~eqincome , design = subset( dbd_eusilc , eqincome > 0 ) )

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )

}

Run the code above in your browser using DataLab