Learn R Programming

convey (version 1.0.1)

svyrmpg: Relative median poverty gap

Description

Estimate the difference between the at-risk-of-poverty threshold (arpt) and the median of incomes less than the arpt relative to the arpt.

Usage

svyrmpg(formula, design, ...)

# S3 method for survey.design svyrmpg( formula, design, quantiles = 0.5, percent = 0.6, na.rm = FALSE, thresh = FALSE, poor_median = FALSE, ... )

# S3 method for svyrep.design svyrmpg( formula, design, quantiles = 0.5, percent = 0.6, na.rm = FALSE, thresh = FALSE, poor_median = FALSE, ... )

# S3 method for DBIsvydesign svyrmpg(formula, design, ...)

Value

Object of class "cvystat", which are vectors with a "var" attribute giving the variance and a "statistic" attribute giving the name of the statistic.

Arguments

formula

a formula specifying the income variable

design

a design object of class survey.design or class svyrep.design from the survey library.

...

future expansion

quantiles

income quantile, usually .5 (median)

percent

fraction of the quantile, usually .60

na.rm

Should cases with missing values be dropped?

thresh

return the poverty poverty threshold

poor_median

return the median income of poor people

Author

Djalma Pessoa and Anthony Damico

Details

you must run the convey_prep function on your survey design object immediately after creating it with the svydesign or svrepdesign function.

References

Guillaume Osier (2009). Variance estimation for complex indicators of poverty and inequality. Journal of the European Survey Research Association, Vol.3, No.3, pp. 167-195, ISSN 1864-3361, URL https://ojs.ub.uni-konstanz.de/srm/article/view/369.

Jean-Claude Deville (1999). Variance estimation for complex statistics and estimators: linearization and residual techniques. Survey Methodology, 25, 193-203, URL https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X19990024882.

See Also

svyarpt

Examples

Run this code

library(survey)
library(laeken)
data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )

# linearized design
des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 ,  weights = ~rb050 , data = eusilc )
des_eusilc <- convey_prep( des_eusilc )

svyrmpg( ~eqincome , design = des_eusilc, thresh = TRUE )

# replicate-weighted design
des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
des_eusilc_rep <- convey_prep( des_eusilc_rep )

svyrmpg( ~eqincome , design = des_eusilc_rep, thresh = TRUE )

if (FALSE) {

# linearized design using a variable with missings
svyrmpg( ~ py010n , design = des_eusilc )
svyrmpg( ~ py010n , design = des_eusilc , na.rm = TRUE )
# replicate-weighted design using a variable with missings
svyrmpg( ~ py010n , design = des_eusilc_rep )
svyrmpg( ~ py010n , design = des_eusilc_rep , na.rm = TRUE )

# database-backed design
library(RSQLite)
library(DBI)
dbfile <- tempfile()
conn <- dbConnect( RSQLite::SQLite() , dbfile )
dbWriteTable( conn , 'eusilc' , eusilc )

dbd_eusilc <-
	svydesign(
		ids = ~rb030 ,
		strata = ~db040 ,
		weights = ~rb050 ,
		data="eusilc",
		dbname=dbfile,
		dbtype="SQLite"
	)

dbd_eusilc <- convey_prep( dbd_eusilc )

svyrmpg( ~ eqincome , design = dbd_eusilc )

dbRemoveTable( conn , 'eusilc' )

dbDisconnect( conn , shutdown = TRUE )

}

Run the code above in your browser using DataLab