The Clayton copula (Joe, 2014, p. 168) is
$$\mathbf{C}_{\Theta}(u,v) = \mathbf{CL}(u,v) = \mathrm{max}\bigl[(u^{-\Theta}+v^{-\Theta}-1; 0)\bigr]^{-1/\Theta}\mbox{,}$$
where \(\Theta \in [-1,\infty), \Theta \ne 0\). The copula, as \(\Theta \rightarrow -1^{+}\) limits, to the countermonotonicity coupla (\(\mathbf{W}(u,v)\); W
), as \(\Theta \rightarrow 0\) limits to the independence copula (\(\mathbf{\Pi}(u,v)\); P
), and as \(\Theta \rightarrow \infty\), limits to the comonotonicity copula (\(\mathbf{M}(u,v)\); M
). The parameter \(\Theta\) is readily computed from a Kendall Tau (tauCOP
) by \(\tau_\mathbf{C} = \Theta/(\Theta+2)\).