The Fréchet Family copula (Durante, 2007, pp. 256--259) is
$$\mathbf{C}_{\alpha, \beta}(u,v) = \mathbf{FF}(u,v) = \alpha\mathbf{M}(u,v) + (1-\alpha-\beta)\mathbf{\Pi}(u,v)+\beta\mathbf{W}(u,v)\mbox{,}$$
where \(\alpha, \beta \ge 0\) and \(\alpha + \beta \le 1\). The Fréchet Family copulas are convex combinations of the fundamental copulas \(\mathbf{W}\) (Fréchet--Hoeffding lower-bound copula; W
), \(\mathbf{\Pi}\) (independence; P
), and \(\mathbf{M}\) (Fréchet--Hoeffding upper-bound copula; M
). The copula is comprehensive because both \(\mathbf{W}\) and \(\mathbf{M}\) can be obtained. The parameters are readily estimated using Spearman Rho (\(\rho_\mathbf{C}\); rhoCOP
) and Kendall Tau (\(\tau_\mathbf{C}\); tauCOP
) by
$$\tau_\mathbf{C} = \frac{(\alpha - \beta)(\alpha + \beta + 2)}{3}\mbox{\ and\ } \rho_\mathbf{C} = \alpha - \beta\mbox{.}$$
The Fréchet Family copula virtually always has a visible singular component unless \(\alpha, \beta = 0\). The copula has respective lower- and upper-tail dependency parameters of \(\lambda^L = \alpha\) and \(\lambda^U = \alpha\) (taildepCOP
). Durante (2007, p. 257) reports that the Fréchet Family copula can approximate any bivariate copula in a “unique way” and the error bound can be estimated.
FRECHETcop(u,v, para=NULL, rho=NULL, tau=NULL, par2rhotau=FALSE, ...)
Value(s) for the copula are returned using the \(\alpha\) and \(\beta\) as set by argument para
; however, if para=NULL
and rho
and tau
are set and compatible with the copula, then \(\{\rho_\mathbf{C}, \tau_\mathbf{C}\} \rightarrow \{\alpha, \beta\}\), parameter estimation made, and an R
list
is returned.
Nonexceedance probability \(u\) in the \(X\) direction;
Nonexceedance probability \(v\) in the \(Y\) direction;
A vector (two element) of parameters \(\alpha\) and \(\beta\);
Spearman Rho from which to estimate the parameters;
Kendall Tau from which to estimate the parameters;
A logical that if TRUE
will return an R list
of the \(\rho_\mathbf{C}\) and \(\tau_\mathbf{C}\) for the parameters; and
Additional arguments to pass.
W.H. Asquith
The function will check the consistency of the parameters whether given by argument or computed from \(\rho_\mathbf{C}\) and \(\tau_\mathbf{C}\). The term “Family” is used with this particular copula in copBasic so as to draw distinction to the Fréchet lower- and upper-bound copulas as the two limiting copulas are called.
For no other reason than that it can be easily done and makes a nice picture, loop through a nest of \(\rho\) and \(\tau\) for the Fréchet Family copula and plot the domain of the resulting parameters:
ops <- options(warn=-1) # warning supression because "loops" are dumb
taus <- rhos <- seq(-1,1, by=0.01)
plot(NA, NA, type="n", xlim=c(0,1), ylim=c(0,1),
xlab="Frechet Copula Parameter Alpha",
ylab="Frechet Copula Parameter Beta")
for(tau in taus) {
for(rho in rhos) {
fcop <- FRECHETcop(rho=rho, tau=tau)
if(! is.na(fcop$para[1])) points(fcop$para[1], fcop$para[2])
}
}
options(ops)
Durante, F., 2007, Families of copulas, Appendix C, in Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature---An approach using copulas: Springer, 289 p.
M
, P
, W