Compute W-ordinal sum of the summands (Klement et al., 2017) within \(\mathcal{I}^2\) into \(n\) partitions (possibly infinite) within \(\mathcal{I}^2\). Letting \(\mathcal{J}\) denote a partition of \(\mathcal{I}^2\) and \(\mathcal{J}_i = [a_i,\, b_i]\) be the \(i\)th partition that does not overlap with others and letting also \(\mathbf{C}_i\) be a copula for the \(i\)th partition, then the ordinal sum of these \(\mathbf{C}_i\) with parameters \(\Theta_i\) with respect to \(\mathcal{J}_i\) is the copula \(\mathbf{C}\) given by
$$\mathbf{C}\bigl(u,v; \mathcal{J}_i, \mathbf{C}_i, \Theta_i, i \in 1,2,\cdots,n\bigr) = a_i + (b_i-a_i)\mathbf{C}_i\biggl(\frac{u-a_i}{b_i-a_i},\, \frac{v-1+b_i}{b_i-a_i}; \Theta_i\biggr)\ \mbox{for}\ (u,v) \in \mathcal{J}^2\mbox{,}$$
for points within the partitions, and for points otherwise outside the partitions the coupla is given by
$$\mathbf{C}\bigl(u,v; \mathcal{J}_i, \mathbf{C}_i, i \in 1,2,\cdots,n\bigr) = \mathbf{W}(u,v)\ \mathrm{for}\ (u,v) \ni \mathcal{J}^2\mbox{, and}$$
let \(\mathbf{C}_\mathcal{J}(u,v)\) be a convenient abbreviation for the copula. (See ORDSUMcop
, M-ordinal sum of the summands.)
ORDSUWcop(u,v, para=list(cop=M, para=NA, part=c(0,1)), ...)
Value(s) for the copula are returned.
Nonexceedance probability \(u\) in the \(X\) direction;
Nonexceedance probability \(v\) in the \(Y\) direction;
A list of sublists for the coupla, parameters, and partitions (see Examples) and some attempt for intelligent in-fill of para
is made within the sources (the default para
is an example for which cop
and para
elements are converted to lists). The user is responsible that part
element properly canvases by end-point alignment all of \(\mathcal{I}^2\); and
Additional arguments to pass.
W.H. Asquith
Klement, E.P., Kolesárová, A., Mesiar, R., Saminger-Platz, S., 2017, Copula constructions using ultramodularity (chap. 9) in Copulas and dependence models with applications---Contributions in honor of Roger B. Nelsen, eds. Flores, U.M., Amo Artero, E., Durante, F., Sánchez, J.F.: Springer, Cham, Switzerland, ISBN 978--3--319--64220--9, tools:::Rd_expr_doi("10.1007/978-3-319-64221-5").
copBasic-package
, W_N5p12a
, ORDSUMcop