Adding permutation asymmetry (Chang and Joe, 2020, p. 1596) (isCOP.permsym
) is simple for a bivariate copula family. Let \(\mathbf{C}\) be a copula with respective vectors of parameters \(\Theta_\mathbf{C}\), then the permutation asymmetry is added through an asymmetry parameter \(\beta \in (-1, +1)\) by
$$\breve{\mathbf{C}}_{\beta;\Theta}(u,v) = v^{-\beta}\cdot\mathbf{C}(u, v^{(1+\beta)};\Theta)\mbox{, and}$$
for \(0 \le \beta \le +1\) by
$$\breve{\mathbf{C}}_{\beta;\Theta}(u,v) = u^{+\beta}\cdot\mathbf{C}(u^{(1-\beta)}, v;\Theta)\mbox{.}$$
The parameter \(\beta\) clashes in name and symbology with a parameter used by functions composite1COP
, composite2COP
, and composite3COP
. As a result, support for alternative naming is provided for compatibility.
breveCOP(u,v, para, breve=NULL, ...)
Value(s) for the copula are returned.
Nonexceedance probability \(u\) in the \(X\) direction;
Nonexceedance probability \(v\) in the \(Y\) direction;
A special parameter list
(see Note);
An alternative way from para
to set the \(\beta\) for this function; and
Additional arguments to pass to the copula.
W.H. Asquith
Chang, B., and Joe, H., 2020, Copula diagnostics for asymmetries and conditional dependence: Journal of Applied Statistics, v. 47, no. 9, pp. 1587--1615, tools:::Rd_expr_doi("10.1080/02664763.2019.1685080").
COP
, convex2COP
, convexCOP
, composite1COP
, composite2COP
, composite3COP
, FRECHETcop
, glueCOP