Learn R Programming

copBasic (version 2.2.6)

convexCOP: Convex Combination of an Arbitrary Number of Copulas

Description

The convex composition of \(N\) number of copulas (Salvadori et al., p. 132, 2007) provides for complexity extension between coupla families. Let \(\mathbf{C}_{i}\) be a copula with respective vector of parameters \(\Theta_i\), then the convex combination of these copulas is

$$\mathbf{C}^{\times}_{\omega}(u,v) = \sum_{i=1}^N \omega_i \mathbf{C}_{i}(u, v; \Theta_i)\mbox{,}$$

where \(\sum_{i=1}^N \omega_i = 1\) for \(N\) number of copulas. The weights \(\omega\) are silently treated as \(1/N\) if the weights element is absent in the R list argument para.

Usage

convexCOP(u,v, para, ...)

Value

Value(s) for the convex combination copula is returned.

Arguments

u

Nonexceedance probability \(u\) in the \(X\) direction;

v

Nonexceedance probability \(v\) in the \(Y\) direction;

para

A special parameter list (see Note); and

...

Additional arguments to pass to the copula.

Author

W.H. Asquith

References

Salvadori, G., De Michele, C., Kottegoda, N.T., and Rosso, R., 2007, Extremes in Nature---An approach using copulas: Springer, 289 p.

See Also

COP, breveCOP, convex2COP, composite1COP, composite2COP, composite3COP, glueCOP