Numerically set a logical whether a copula is symmetric (Nelsen, 2006, p. 38), or has exchangable variables, or is permutation symmetric (Joe, 2014, p. 66). A copula \(\mathbf{C}(u,v)\) is permutation symmetric if and only if for any \(\{u,v\} \in [0,1]\) the following holds $$\mathbf{C}(u,v) = \mathbf{C}(v, u)\mbox{.}$$ The computation is (can be) CPU intensive.
isCOP.permsym(cop=NULL, para=NULL, delta=0.005, tol=1e-4, ...)
A logical TRUE
or FALSE
is returned.
A copula function;
Vector of parameters, if needed, to pass to the copula;
The increment of \(\{u,v\} \mapsto [0+\Delta\delta, 1-\Delta\delta, \Delta\delta]\);
A tolerance on the check for symmetry, default 1 part in 10,000, which is the test for the \(\equiv 0\) (zero equivalence, see source code); and
Additional arguments to pass to the copula.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
LzCOPpermsym
, isCOP.radsym