Compute the (numerical) inverse \(F^{(-1)}_K(z) \equiv z(F_K)\) of the Kendall Function \(F_K(z; \mathbf{C})\) (kfuncCOP
) of a copula \(\mathbf{C}(u,v)\) given nonexceedance probability \(F_K\). The \(z\) is the joint probability of the random variables \(U\) and \(V\) coupled to each other through the copula \(\mathbf{C}(u,v)\) and the nonexceedance probability of the probability \(z\) is \(F_K\)---statements such as “probabilities of probabilities” are rhetorically complex so pursuit of word precision is made herein.
kfuncCOPinv(f, cop=NULL, para=NULL, subdivisions=100L,
rel.tol=.Machine$double.eps^0.25, abs.tol=rel.tol, ...)
The value(s) for \(z(F_K)\) are returned.
Nonexceedance probability \((0 \le F_K \le 1)\);
A copula function;
Vector of parameters or other data structure, if needed, to pass to the copula;
Argument of same name passed to integrate()
through kfuncCOP
,
Argument of same name passed to integrate()
through kfuncCOP
,
Argument of same name passed to integrate()
through kfuncCOP
, and
Additional arguments to pass.
W.H. Asquith
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978--146350841--8.
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
kfuncCOP