The Frank copula (Joe, 2014, p. 165) is
$$\mathbf{C}_{\Theta}(u,v) = \mathbf{FR}(u,v) = -\frac{1}{\Theta}\mathrm{log}\biggl[\frac{1 - \mathrm{e}^{-\Theta} - \bigl(1 - \mathrm{e}^{-\Theta u}\bigr) \bigl(1 - \mathrm{e}^{-\Theta v}\bigr)}{1 - \mathrm{e}^{-\Theta}}\biggr]\mbox{,} $$
where \(\Theta \in [-\infty, +\infty], \Theta \ne 0\). The copula, as \(\Theta \rightarrow -\infty\) limits, to the countermonotonicity coupla (\(\mathbf{W}(u,v)\); W
), as \(\Theta \rightarrow 0^{\pm}\) limits to the independence copula (\(\mathbf{\Pi}(u,v)\); P
), and as \(\Theta \rightarrow +\infty\), limits to the comonotonicity copula (\(\mathbf{M}(u,v)\); M
). The parameter \(\Theta\) is readily computed from a Kendall Tau (tauCOP
) by numerical methods as \(\tau_{\mathbf{C}}(\Theta) = 1 + 4\Theta^{-1}[D_1(\Theta) - 1]\)
or from a Spearman Rho (rhoCOP
) as
\(\rho_{\mathbf{C}}(\Theta) = 1 + 4\Theta^{-1}[D_2(\Theta) - D_1(\Theta)]\) for Debye function as
$$
D_k(x, k) = k x^{-k} \int_0^x t^k \bigl(\mathrm{e}^{t} - 1\bigr)^{-1}\, \mathrm{d}t\mbox{.}
$$
FRcop(u, v, para=NULL, rhotau=NULL, userhotau_chk=TRUE,
cortype=c("kendall", "spearman", "tau", "rho"), ...)
Value(s) for the copula are returned. Otherwise if tau
is given, then the \(\Theta\) is computed and a list
having
The parameter \(\Theta\), and
Kendall Tau.
and if para=NULL
and tau=NULL
, then the values within u
and v
are used to compute Kendall Tau and then compute the parameter, and these are returned in the aforementioned list. Or if rho
is given, then the \(\Theta\) is computed and a similar list
is returned having similar structure but with Spearman Rho instead.
Nonexceedance probability \(u\) in the \(X\) direction;
Nonexceedance probability \(v\) in the \(Y\) direction;
A vector (single element) of parameters---the \(\Theta\) parameter of the copula;
Optional Kendall Tau or Spearman Rho and parameter para
is returned depending on the setting of cortype
. The u
and v
can be used for estimation of the parameter as computed through the setting of cortype
;
A character string controlling, if the parameter is not given, to use a Kendall Tau or Spearman Rho for estimation of the parameter. The name of this argument is reflective of an internal call to stats::cor()
to the correlation (association) setting for Kendall Tau or Spearman Rho;
A logical to trigger computation of Kendall Tau for the given parameter and used as a secondary check on numerical limits of the copula implementation for the package; and
Additional arguments to pass.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
M
, P
, W