Compute the measure of association known as the Spearman Rho \(\rho_\mathbf{C}\) of a copula according to Nelsen (2006, pp. 167--170, 189, 208) by
$$\rho_\mathbf{C} = 12\int\!\!\int_{\mathcal{I}^2} \mathbf{C}(u,v)\, \mathrm{d}u\mathrm{d}v - 3\mbox{,}$$
or
$$\rho_\mathbf{C} = 12\int\!\!\int_{\mathcal{I}^2} \bigl[\mathbf{C}(u,v) - uv\bigr]\, \mathrm{d}u\mathrm{d}v\mbox{,}$$
where the later equation is implemented by rhoCOP
as the default method (method="default"
). This equation, here having \(p = 1\) and \(k_p(1) = 12\), is generalized under hoefCOP
. The absence of the \(12\) in the above equation makes it equal to the covariance of a copula defined by the Hoeffding Identity (Joe, 2014, p. 54):
$$\mathrm{cov}(U, V) = \int\!\!\int_{\mathcal{I}^2} \bigl[\mathbf{C}(u,v) - uv\bigr]\, \mathrm{d}u\mathrm{d}v\mbox{ or}$$
$$\mathrm{cov}(U, V) = \int\!\!\int_{\mathcal{I}^2} \bigl[\hat{\mathbf{C}}(u,v) - uv\bigr]\, \mathrm{d}u\mathrm{d}v\mbox{, which\ is}$$
$$\mathrm{cov}(U, V) = \int\!\!\int_{\mathcal{I}^2} \bigl[u+v-1+\mathbf{C}(1-u,1-v) - uv\bigr]\, \mathrm{d}u\mathrm{d}v\mbox{.}$$
Depending on copula family (Joe, 2014, pp. 56 and 267), the alternative formulation for \(\rho_\mathbf{C}\) could be used
$$\rho_\mathbf{C} = 3 - 12\int\!\!\int_{\mathcal{I}^2} u \frac{\delta\mathbf{C}(u,v)}{\delta u} \, \mathrm{d}u\mathrm{d}v = 3 - 12\int\!\!\int_{\mathcal{I}^2} v\frac{\delta\mathbf{C}(u,v)}{\delta v} \, \mathrm{d}u\mathrm{d}v\mbox{,}$$
where the first integral form corresponds to Joe (2014, eq. 248, p. 56) and is the method="joe21"
, and the second integral form is the method="joe12"
.
The integral
$$\int\!\!\int_{\mathcal{I}^2} \mathbf{C}(u,v)\,\mathrm{d}u\mathrm{d}v\mbox{,}$$
represents the “volume under the graph of the copula and over the unit square” (Nelsen, 2006, p. 170) and therefore \(\rho_\mathbf{C}\) is simple a rescaled volume under the copula. The second equation for \(\rho_\mathbf{C}\) expresses the “average distance” between the joint distribution and statistical independence \(\mathbf{\Pi} = uv\). Nelsen (2006, pp. 175--176) shows that the following relation between \(\rho_\mathbf{C}\) and \(\tau_\mathbf{C}\) (tauCOP
) exists
$$-1 \le 3\tau - 2\rho \le 1\mbox{.}$$
rhoCOP(cop=NULL, para=NULL, method=c("default", "joe21", "joe12"),
as.sample=FALSE, brute=FALSE, delta=0.002, ...)
The value for \(\rho_\mathbf{C}\) is returned.
A copula function;
Vector of parameters or other data structure, if needed, to pass to the copula;
The form of integration used to compute (see above);
A logical controlling whether an optional R data.frame
in para
is used to compute the \(\hat\rho\) by dispatch to cor()
function in R with method = "spearman"
;
Should brute force be used instead of two nested integrate()
functions in R to perform the double integration;
The \(\mathrm{d}u\) and \(\mathrm{d}v\) for the brute force integration using brute
; and
Additional arguments to pass.
W.H. Asquith
Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.
Nelsen, R.B., 2006, An introduction to copulas: New York, Springer, 269 p.
blomCOP
, footCOP
, giniCOP
,
hoefCOP
, tauCOP
, wolfCOP
,
joeskewCOP
, uvlmoms