Learn R Programming

copula (version 0.5-8)

fitCopula: Maximum Likelihood Estimation of Copula Models

Description

Fit a copula model to multivariate data.

Usage

loglikCopula(param, x, copula)
loglikMvdc(param, x, mvdc)
fitCopula(data, copula, start, lower=NULL, upper=NULL,
          optim.control = list(NULL), method = "BFGS")
fitMvdc(data, mvdc, start, optim.control = list(NULL), method = "BFGS")

Arguments

param
a vector of parameter values
x
a data matrix
copula
a 'copula' object
mvdc
a 'mvdc' object
data
a data matrix
start
a vector of starting value for param
lower, upper
bounds on the variables for the '"L-BFGS-B"' method.
optim.control
a list of control to be passed to optim
method
the method for optim

Value

  • The return values of 'loglikCopula' and 'loglikMvdc' are the loglikelihood evaluated at the given value of 'param'. The return values of 'fitCopula' and 'fitMvdc' are an object of class 'fitCopula' and 'fitMvdc', respectively, containing slots:
  • estthe estimate of the parameters
  • var.estvariance matrix of the estimate
  • loglikloglikelihood at est
  • fitthe result of optim

References

Yan (2006), Multivariate Modeling with Copulas and Engineering Applications. In Handbook of Engineering Statistics, Ed. Pham, Springer.

See Also

Copula, mvdc

Examples

Run this code
gmb <- gumbelCopula(3, dim=2)
myMvd <- mvdc(gmb, c("exp","exp"), list(list(rate=2),list(rate=4)))
x <- rmvdc(myMvd, 1000)
fit <- fitMvdc(x, myMvd, c(1,1,2))
fit

Run the code above in your browser using DataLab