norm.cop <- normalCopula(0.5)
norm.cop
x <- rcopula(norm.cop, 100)
plot(x)
dcopula(norm.cop, x)
pcopula(norm.cop, x)
persp(norm.cop, dcopula)
contour(norm.cop, pcopula)
## a 3-dimensional normal copula
u <- rcopula(normalCopula(0.5, dim = 3), 1000)
if(require("scatterplot3d"))
scatterplot3d(u)
## a 3-dimensional clayton copula
cl3 <- claytonCopula(2, dim = 3)
v <- rcopula(cl3, 1000)
pairs(v)
if(require("scatterplot3d"))
scatterplot3d(v)
## Compare with the "nacopula" version :
fu1 <- dcopula(cl3, v)
fu2 <- copClayton@dacopula(v, theta = 2)
Fu1 <- pcopula(cl3, v)
Fu2 <- pnacopula(onacopula("Clayton", C(2.0, 1:3)), v)
## The density and cumulative values are the same:
stopifnot(all.equal(fu1, fu2, tol= 1e-14),
all.equal(Fu1, Fu2, tol= 1e-15))
Run the code above in your browser using DataLab