## Construct a ten-dimensional Joe copula with parameter such that
## Kendall's tau equals 0.5
theta <- copJoe@tauInv(0.5)
C10 <- onacopula("J",C(theta,1:10))
## Equivalent construction with onacopulaL():
C10. <- onacopulaL("J",list(theta,1:10))
stopifnot(identical(C10, C10.),
identical(nac2list(C10), list(theta, 1:10)))
## Construct a three-dimensional nested Gumbel copula with parameters
## such that Kendall's tau of the respective bivariate margins are 0.2
## and 0.5.
theta0 <- copGumbel@tauInv(.2)
theta1 <- copGumbel@tauInv(.5)
C3 <- onacopula("G", C(theta0, 1, C(theta1, c(2,3))))
## Equivalent construction with onacopulaL():
str(NAlis <- list(theta0, 1, list(list(theta1, c(2,3)))))
C3. <- onacopulaL("Gumbel", NAlis)
stopifnot(identical(C3, C3.))
## Good error message if the component ("coordinate") indices are wrong
## or do not match:
err <- try(onacopula("G", C(theta0, 2, C(theta1, c(3,2)))))
## Compute the probability of falling in [0,.01]^3 for this copula
pnacopula(C3, rep(.01,3))
## Compute the probability of falling in the cube [.99,1]^3
prob(C3, rep(.99, 3), rep(1, 3))
Run the code above in your browser using DataLab