enacopula(u, cop, method = c("mle", "smle", "dmle", "mde.chisq.CvM", "mde.chisq.KS", "mde.gamma.CvM", "mde.gamma.KS", "tau.tau.mean", "tau.theta.mean", "beta"), n.MC = if (method == "smle") 10000 else 0, interval = initOpt(cop@copula@name), xargs = list(), ...)pobs first in order to obtain u.outer_nacopula to be estimated
    (currently only Archimedean copulas are provided).character string specifying the
    estimation method to be used, which has to be one (or a unique
    abbreviation) of
    "mle".emle.
"smle".emle, where
	n.MC gives the Monte Carlo sample size.
"dmle"edmle.
"mde.chisq.CvM"emde.
"mde.chisq.KS"emde.
"mde.gamma.CvM"emde.
"mde.gamma.KS"emde.
"tau.tau.mean"
"tau.theta.mean"
"beta"
method = "smle": integer,
    sample size for simulated maximum likelihood estimation."tau.tau.mean" and "tau.theta.mean".optimize.enacopula serves as a wrapper for the different
  implemented estimators and provides a uniform framework to utilize
  them.  For more information, see the single estimators as given in the
  section See Also.  Note that Hofert, Mächler, and McNeil (2013) compared these
  estimators. Their findings include a rather poor performance and numerically
  challenging problems of some of these estimators. In particular, the
  estimators obtained by method="mde.gamma.CvM",
  method="mde.gamma.KS", method="tau.theta.mean", and
  method="beta" should be used with care (or not at all). Overall, MLE
  performed best (by far).
Hofert, M., Mächler, M., and McNeil, A. J. (2013). Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la Société Française de Statistique 154(1), 25--63.
emle which returns an object of "mle"
  providing useful methods not available for other estimators.
  demo(opC-demo) and demo(GIG-demo) for
  examples of two-parameter families.
  edmle for the diagonal maximum likelihood estimator.
  emde for the minimum distance estimators.
  etau for the estimators based on Kendall's tau.
  ebeta for the estimator based on Blomqvist's beta.
tau <- 0.25
(theta <- copGumbel@iTau(tau)) # 4/3
d <- 12
(cop <- onacopulaL("Gumbel", list(theta,1:d)))
set.seed(1)
n <- 100
U <- rnacopula(n, cop)
meths <- eval(formals(enacopula)$method)
fun <- function(meth, u, cop, theta) {
	run.time <- system.time(val <- enacopula(u, cop=cop, method=meth))
	list(value=val, error=val-theta, utime.ms=1000*run.time[[1]])
}
t(res <- sapply(meths, fun, u=U, cop=cop, theta=theta))
Run the code above in your browser using DataLab