## Generate data X (from a meta-Gumbel model with N(0,1) margins)
n <- 100
d <- 3
family <- "Gumbel"
theta <- 2
cop <- onacopulaL(family, list(theta=theta, 1:d))
set.seed(1)
X <- qnorm(rCopula(n, cop)) # meta-Gumbel data with N(0,1) margins
## Random points were to evaluate the empirical copula
u <- matrix(runif(n*d), n, d)
ec <- C.n(u, X)
## Compare the empirical copula with the true copula
mean(abs(pCopula(u, copula=cop)-ec)) # ~= 0.012 -- increase n to decrease this error
## Compare the empirical copula with F.n(pobs())
U <- pobs(X) # pseudo-observations
stopifnot(identical(ec, F.n(u, X=pobs(U)))) # even identical
## Compare the empirical copula based on U at U with the Kendall distribution
## Note: Theoretically, C(U) ~ K, so K(C_n(U, U=U)) should approximately be U(0,1)
plot(pK(C.n(U, X), cop=cop@copula, d=d))
## Compare the empirical copula and the true copula on the diagonal
C.n.diag <- function(u) C.n(do.call(cbind, rep(list(u), d)), X=X) # diagonal of C_n
C.diag <- function(u) pCopula(do.call(cbind, rep(list(u), d)), cop) # diagonal of C
curve(C.n.diag, from=0, to=1, # empirical copula diagonal
main=paste("True vs empirical diagonal of a", family, "copula"),
xlab="u", ylab=expression("True C(u,..,u) and empirical"~C[n](u,..,u)))
curve(C.diag, lty=2, add=TRUE) # add true copula diagonal
legend("bottomright", lty=2:1, bty="n", inset=0.02,
legend=c("C", expression(C[n])))
## Approximate partial derivatives w.r.t. the 2nd and 3rd component
j.ind <- 2:3 # indices w.r.t. which the partial derivatives are computed
## Partial derivatives based on the empirical copula and the true copula
der23 <- dCn(u, U=pobs(U), j.ind=j.ind)
der23. <- copula:::dCdu(archmCopula(family, param=theta, dim=d), u=u)[,j.ind]
## Approximation error
summary(as.vector(abs(der23-der23.)))
## For an example of using F.n(), see help(mvdc)% ./Mvdc.Rd
Run the code above in your browser using DataLab