Stirling1(n, k)
Stirling2(n, k, method = c("lookup.or.store", "direct"))
Eulerian (n, k, method = c("lookup.or.store", "direct"))
Stirling1.all(n)
Stirling2.all(n)
Eulerian.all (n)
0
is allowed for Eulerian()
).0:n
.Eulerian()
and Stirling2()
, string
specifying the method to be used. "direct"
uses the explicit
formula (which may suffer from some cancelation for large
n
).Eulerian.all(n)
is the same as sapply(0:(n-1), Eulerian, n=n)
(for $n > 0$),
Stirling1.all(n)
is the same as sapply(1:n, Stirling1, n=n)
,
and
Stirling2.all(n)
is the same as sapply(1:n, Stirling2, n=n)
,
but more efficient.
Stirling numbers of the first kind: s(n,k) = (-1)^n-k times the number of permutations of 1,2,...,n with exactly k cycles.
Stirling numbers of the second kind: $S(n,k)$ is the number of ways of partitioning a set of $n$ elements into $k$ non-empty subsets.
NIST Digital Library of Mathematical Functions, 26.14: http://dlmf.nist.gov/26.14
Stirling numbers:
Abramowitz and Stegun 24,1,4 (p. 824-5 ; Table 24.4, p.835); Closed Form : p.824 "C."
NIST Digital Library of Mathematical Functions, 26.8: http://dlmf.nist.gov/26.8
Stirling1(7,2)
Stirling2(7,3)
Stirling1.all(9)
Stirling2.all(9)
Run the code above in your browser using DataLab