
fitLambda(u, method = c("Schmid.Schmidt", "t"), p = min(100/nrow(u), 0.1), lower.tail = TRUE, verbose = FALSE, ...)
matrix
of (pseudo-)observations in
$[0,1]^d$ for estimating the (matrix of) tail-dependence coefficients.
tail = "lower"
) or above (for tail = "upper"
) which
the estimation takes place.logical
indicating whether the lower
(the default) or upper tail-dependence coefficient is computed.logical
indicating whether a progress
bar is displayed.optimize()
in case method
= "t"
).method = "t"
a list additional containing the matrix
of pairwise estimated correlation coefficients and the matrix of
pairwise estimated degrees of freedom.
p
and in
general). After all, the notion of tail dependence is a limit,
finite sample sizes might not be able to capture well.
Schmid, F., Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence. Journal of Multivariate Analysis 98, 1123--1140.
n <- 10000 # sample size
p <- 0.01 # cut-off
## Bivariate case
d <- 2
cop <- claytonCopula(2, dim = d)
set.seed(271)
U <- rCopula(n, copula = cop) # generate observations (unrealistic)
(lam.true <- lambda(cop)) # true tail-dependence coefficients lambda
(lam.C <- c(lower = fitLambda(U, p = p)[2,1],
upper = fitLambda(U, p = p, lower.tail = FALSE)[2,1])) # estimate lambdas
## => pretty good
U. <- pobs(U) # pseudo-observations (realistic)
(lam.C. <- c(lower = fitLambda(U., p = p)[2,1],
upper = fitLambda(U., p = p, lower.tail = FALSE)[2,1])) # estimate lambdas
## => The pseudo-observations do have an effect...
## Higher-dimensional case
d <- 5
cop <- claytonCopula(2, dim = d)
set.seed(271)
U <- rCopula(n, copula = cop) # generate observations (unrealistic)
(lam.true <- lambda(cop)) # true tail-dependence coefficients lambda
(Lam.C <- list(lower = fitLambda(U, p = p),
upper = fitLambda(U, p = p, lower.tail = FALSE))) # estimate Lambdas
## => Not too good
U. <- pobs(U) # pseudo-observations (realistic)
(Lam.C. <- list(lower = fitLambda(U., p = p),
upper = fitLambda(U., p = p, lower.tail = FALSE))) # estimate Lambdas
## => Performance not too great here in either case
Run the code above in your browser using DataLab