Learn R Programming

copula (version 0.999-15)

ggraph-tools: Computations for Graphical GOF Test via Pairwise Rosenblatt Transforms

Description

Tools for computing a graphical goodness-of-fit (GOF) test based on pairwise Rosenblatt transformed data.

Usage

pairwiseCcop(u, copula, ...) pairwiseIndepTest(cu.u, N=256, iTest = indepTestSim(n, p=2, m=2, N=N, verbose = idT.verbose, ...), verbose=TRUE, idT.verbose = verbose, ...)
pviTest(piTest) gpviTest(pvalues, method=p.adjust.methods, globalFun=min)

Arguments

u
$(n,d)$-matrix of copula data.
copula
copula object used for the Rosenblatt transform ($H[0]$ copula).
...
additional arguments passed to the internal function which computes the conditional copulas (for pairwiseCcop()). Can be used to pass, for example, the degrees of freedom parameter df for t-copulas.

For pairwiseIndepTest(), ... are passed to indepTestSim().

cu.u
$(n,d,d)$-array as returned by pairwiseCcop().
N
argument of indepTestSim().
iTest
the result of (a version of) indepTestSim(); as it does not depend on the data, and is costly to compute, it can be computed separately and passed here.
verbose
integer (or logical) indicating if and how much progress should be printed during the computation of the tests for independence.
idT.verbose
logical, passed as verbose argument to indepTestSim().
piTest
$(d,d)$-matrix of indepTest objects as returned by pairwiseIndepTest().
pvalues
$(d,d)$-matrix of p-values.
method
character vector of adjustment methods for p-values; see p.adjust.methods for more details.
globalFun
function determining how to compute a global p-value from a matrix of pairwise adjusted p-values.

Value

References

Hofert and Mächler (2013), see pairsRosenblatt.

See Also

pairsRosenblatt for where these tools are used, including demo(gof_graph) for examples.

Examples

Run this code
## demo(gof_graph)

Run the code above in your browser using DataLab