## generate data on the unit sphere
n <- 360
d <- 5
set.seed(1)
x <- matrix(rnorm(n*d), ncol=d)
U <- x/sqrt(rowSums(x^2))
## compute the test statistics B_k, k in {1,..,d-1}
Bmat <- gofBTstat(U)
## (graphically) check if Bmat[,k] follows a Beta(k/2, (d-k)/2) distribution
qqp <- function(k, Bmat)
qqplot2(Bmat[,k], qF=function(p) qbeta(p, shape1=k/2, shape2=(ncol(Bmat)+1-k)/2),
main.args=list(text=as.expression(substitute(plain("Beta")(s1,s2)~~
bold("Q-Q Plot"), list(s1=k/2, s2=(d-k)/2))), side=3, cex=1.3, line=1.1, xpd=NA))
qqp(1, Bmat=Bmat) # k=1
qqp(3, Bmat=Bmat) # k=3
Run the code above in your browser using DataLab