## A bivariate Khoudraji-Clayton copula
kc <- khoudrajiCopula(copula2 = claytonCopula(6),
shapes = c(0.4, 0.95))
class(kc)
kc ## FIXME: too long 'fullname'
contour(kc, dCopula, nlevels = 20, main = "dCopula(<khoudrajiBivCopula>)")
## A Khoudraji-Clayton copula with second shape parameter fixed
kcf <- khoudrajiCopula(copula2 = claytonCopula(6),
shapes = fixParam(c(0.4, 0.95), c(FALSE, TRUE)))
## A "nested" Khoudraji bivariate copula
kgkcf <- khoudrajiCopula(copula1 = gumbelCopula(3),
copula2 = kcf,
shapes = c(0.7, 0.25))
contour(kgkcf, dCopula, nlevels = 20, main = "dCopula(<khoudrajiBivCopula>)")
n <- 300
u <- rCopula(n, kc)
plot(u)
## Not run:
# ## Fitting can be difficult
# ## Starting values are required for all parameters
# fitCopula(khoudrajiCopula(copula2 = claytonCopula()),
# start = c(1.1, 0.5, 0.5), data = pobs(u),
# optim.method = "Nelder-Mead")
#
# ## Second shape parameter fixed to 0.95
# kcf2 <- khoudrajiCopula(copula2 = claytonCopula(),
# shapes = fixParam(c(NA_real_, 0.95), c(FALSE, TRUE)))
# fitCopula(kcf2,
# start = c(1.1, 0.5), data = pobs(u),
# optim.method = "Nelder-Mead")
#
# ## With a different optimization method
# fitCopula(kcf2,
# start = c(1.1, 0.5), data = pobs(u),
# optim.method = "BFGS")
#
# ## GOF example
# optim.method <- "Nelder-Mead" #try "BFGS" as well
# gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method)
# gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method,
# sim = "mult")
# ## The goodness-of-fit tests should hold their level
# ## but this would need to be tested
#
# ## Another example under the alternative
# u <- rCopula(n, gumbelCopula(4))
# gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method)
# gofCopula(kcf2, x = u, start = c(1.1, 0.5), optim.method = optim.method,
# sim = "mult")
#
# ## Higher-dimensional constructions
#
# ## A three dimensional Khoudraji-Clayton copula
# kcd3 <- khoudrajiCopula(copula1 = indepCopula(dim=3),
# copula2 = claytonCopula(6, dim=3),
# shapes = c(0.4, 0.95, 0.95))
# kcd3
# class(kcd3)
#
# n <- 1000
# u <- rCopula(n, kcd3)
# v <- matrix(runif(15), 5, 3)
# splom2(u)
# dCopula(v, kcd3)
#
# ## A four dimensional Khoudraji-Normal copula
# knd4 <- khoudrajiCopula(copula1 = indepCopula(dim=4),
# copula2 = normalCopula(.9, dim=4),
# shapes = c(0.4, 0.95, 0.95, 0.95))
# knd4
# class(knd4)
# u <- rCopula(n, knd4)
# splom2(u)
# ## dCopula(v, knd4) ## not implemented
# ## End(Not run)
Run the code above in your browser using DataLab