
outer_nacopula
) is most conveniently done via
onacopula()
, using a nested $C(...)$ notation. Slightly less conveniently, but with the option to pass a list
structure, onacopulaL()
can be used, typically from inside
another function programmatically.
onacopula (family, nacStructure)
onacopulaL(family, nacList)
nac2list(x)
character
string, the short
or longer form of the Archimedean family name (for example,
"Clayton" or simply "C"); see the acopula-families
documentation, or an acopula
family object.comp
slot in nacopula
s), and finally a
(possibly empty) list of child copulas, each specified with in the
$C(..)$ notation themselves."nacopula"
, (typically
"outer_nacopula"
) object.onacopula[L]()
:
An outer nested Archimedean copula object, that is, of class
"outer_nacopula"
.nac2list
: a list
exactly like the naclist
argument to onacopulaL
.
copGumbel
.
"nacopula"
,
"outer_nacopula"
, and "acopula"
.
## Construct a ten-dimensional Joe copula with parameter such that
## Kendall's tau equals 0.5
theta <- copJoe@iTau(0.5)
C10 <- onacopula("J",C(theta,1:10))
## Equivalent construction with onacopulaL():
C10. <- onacopulaL("J",list(theta,1:10))
stopifnot(identical(C10, C10.),
identical(nac2list(C10), list(theta, 1:10)))
## Construct a three-dimensional nested Gumbel copula with parameters
## such that Kendall's tau of the respective bivariate margins are 0.2
## and 0.5.
theta0 <- copGumbel@iTau(.2)
theta1 <- copGumbel@iTau(.5)
C3 <- onacopula("G", C(theta0, 1, C(theta1, c(2,3))))
## Equivalent construction with onacopulaL():
str(NAlis <- list(theta0, 1, list(list(theta1, c(2,3)))))
C3. <- onacopulaL("Gumbel", NAlis)
stopifnot(identical(C3, C3.))
## An exercise: assume you got the copula specs as character string:
na3spec <- "C(theta0, 1, C(theta1, c(2,3)))"
na3call <- parse(text = na3spec)[[1]]
C3.s <- onacopula("Gumbel", na3call)
stopifnot(identical(C3, C3.s))
## Good error message if the component ("coordinate") indices are wrong
## or do not match:
err <- try(onacopula("G", C(theta0, 2, C(theta1, c(3,2)))))
## Compute the probability of falling in [0,.01]^3 for this copula
pCopula(rep(.01,3), C3)
## Compute the probability of falling in the cube [.99,1]^3
prob(C3, rep(.99, 3), rep(1, 3))
## Construct a 6-dimensional, partially nested Gumbel copula of the form
## C_0(C_1(u_1, u_2), C_2(u_3, u_4), C_3(u_5, u_6))
theta <- 2:5
copG <- onacopulaL("Gumbel", list(theta[1], NULL, list(list(theta[2], c(1,2)),
list(theta[3], c(3,4)),
list(theta[4], c(5,6)))))
set.seed(1)
U <- rCopula(5000, copG)
pairs(U, pch=".", gap=0, labels=as.expression( sapply(1:dim(copG),
function(j) bquote(italic(U[.(j)]))) ))
Run the code above in your browser using DataLab