Learn R Programming

copula (version 0.999-15)

persp-methods: Methods for Function `persp' in Package `copula'

Description

Methods for function persp to draw perspective plots (of two dimensional distributions from package copula).

Usage

"persp"(x, FUN, n.grid = 26, delta = 0, xlab = "u1", ylab = "u2", zlab = deparse(substitute(FUN))[1], theta = -30, phi = 30, expand = 0.618, ticktype = "detail", ...) "persp"(x, FUN, xlim, ylim, n.grid = 26, xlab = "x1", ylab = "x2", zlab = deparse(substitute(FUN))[1], theta = -30, phi = 30, expand = 0.618, ticktype = "detail", ...)

Arguments

x
a "Copula" or a "mvdc" object.
FUN
the function to be plotted; typically dCopula or pCopula.
n.grid
the number of grid points used in each dimension. This can be a vector of length two, giving the number of grid points used in x- and y-direction, respectively; the function FUN will be evaluated on the corresponding (x,y)-grid.
delta
A small number in $[0, 1/2)$ influencing the evaluation boundaries. The x- and y- vectors will have the range [0+delta, 1-delta], the default being [0,1].
xlim, ylim
The range of the x and y variables, respectively.
xlab, ylab, zlab, theta, phi, expand, ticktype, ...
Arguments for (the default method of) persp(), the ones enumerated here all with different defaults than there.

Value

invisible; a list with the following components:

Methods

Perspective plots for both "copula" or "mvdc" objects, see x in the Arguments section.

See Also

The contour-methods for drawing contour lines of the same functions.

Examples

Run this code
persp(frankCopula(-0.8), dCopula)
persp(claytonCopula(2),  pCopula, main = "CDF of claytonCopula(2)")
## An example with negative tau:
(th1 <- iTau(amhCopula(), -0.1))
persp(amhCopula(th1), dCopula)
persp(amhCopula(th1), pCopula, ticktype = "simple") # no axis ticks

mvNN <- mvdc(gumbelCopula(3), c("norm", "norm"),
          list(list(mean = 0, sd = 1), list(mean = 1)))
persp(mvNN, dMvdc, xlim=c(-2, 2), ylim=c(-1, 3), main = "Density")
persp(mvNN, pMvdc, xlim=c(-2, 2), ylim=c(-1, 3), main = "Cumulative Distr.")

Run the code above in your browser using DataLab