Learn R Programming

copula (version 0.999-15)

rFFrankJoe: Sampling Distribution F for Frank and Joe

Description

Generate a vector of variates $V ~ F$ from the distribution function $F$ with Laplace-Stieltjes transform $$(1-(1-\exp(-t)(1-e^{-\theta_1}))^\alpha)/(1-e^{-\theta_0}), $$ for Frank, or $$1-(1-\exp(-t))^\alpha,$$ for Joe, respectively, where $theta0$ and $theta1$ denote two parameters of Frank (that is, $theta0,theta1 in (0,Inf)$) and Joe (that is, $ theta0,theta1 in [1,Inf)$) satisfying $theta0

Usage

rFFrank(n, theta0, theta1, rej) rFJoe(n, alpha)

Arguments

n
number of variates from $F$.
theta0
parameter $theta0$.
theta1
parameter $theta1$.
rej
method switch for rFFrank: if theta0 > rej a rejection from Joe's family (Sibuya distribution) is applied (otherwise, a logarithmic envelope is used).
alpha
parameter $alpha = theta0/theta1$ in $(0,1]$ for rFJoe.

Value

numeric vector of random variates $V$ of length n.

Details

rFFrank(n, theta0, theta1, rej) calls rF01Frank(rep(1,n), theta0, theta1, rej, 1) and rFJoe(n, alpha) calls rSibuya(n, alpha).

See Also

rF01Frank, rF01Joe, also for references. rSibuya, and rnacopula.

Examples

Run this code
## Simple definition of the functions:
rFFrank
rFJoe

Run the code above in your browser using DataLab