rFFrankJoe: Sampling Distribution F for Frank and Joe
Description
Generate a vector of variates $V ~ F$ from the distribution
function $F$ with Laplace-Stieltjes transform
$$(1-(1-\exp(-t)(1-e^{-\theta_1}))^\alpha)/(1-e^{-\theta_0}),
$$
for Frank, or
$$1-(1-\exp(-t))^\alpha,$$ for Joe, respectively,
where $theta0$ and $theta1$ denote two parameters
of Frank (that is, $theta0,theta1
in (0,Inf)$) and Joe (that is, $
theta0,theta1 in [1,Inf)$) satisfying
$theta0
Usage
rFFrank(n, theta0, theta1, rej)
rFJoe(n, alpha)
Arguments
n
number of variates from $F$.
theta0
parameter $theta0$.
theta1
parameter $theta1$.
rej
method switch for rFFrank: if theta0 >
rej a rejection from Joe's family (Sibuya distribution) is
applied (otherwise, a logarithmic envelope is used).
alpha
parameter $alpha = theta0/theta1$ in $(0,1]$ for
rFJoe.
Value
numeric vector of random variates $V$ of length n.