Learn R Programming

copula (version 0.999-15)

splom2-methods: Methods for Scatter Plot Matrix 'splom2' in Package 'copula'

Description

Methods splom2() to draw scatter-plot matrices of (random samples of) distributions from package copula.

Usage

"splom2"(x, varnames = NULL, varnames.null.lab = "U", xlab = "", col.mat = NULL, bg.col.mat = NULL, ...) "splom2"(x, varnames = NULL, varnames.null.lab = "U", xlab = "", col.mat = NULL, bg.col.mat = NULL, ...) "splom2"(x, n, ...) "splom2"(x, n, varnames.null.lab = "X", ...)

Arguments

x
a "matrix", "data.frame", "Copula" or a "mvdc" object.
n
when x is not matrix-like: The sample size of the random sample drawn from x.
varnames
the variable names, typically unspecified.
varnames.null.lab
the character string determining the “base name” of the variable labels in case varnames is NULL and x does not have all column names given.
xlab
the x-axis label.
col.mat
a matrix of colors for the plot symbols (the default is the setting as obtained from trellis.par.get("plot.symbol")$col).
bg.col.mat
a matrix of colors for the background (the default is the setting as obtained from trellis.par.get("background")$col).
...
additional arguments passed to the underlying splom().

Value

splom(), an R object of class "trellis".

See Also

pairs2() for a similar function (for matrices and data frames) based on pairs().

Examples

Run this code
## For 'matrix' objects
## Create a 100 x 7 matrix of random variates from a t distribution
## with four degrees of freedom and plot the generated data
n <- 1000 # sample size
d <- 3 # dimension
nu <- 4 # degrees of freedom
tau <- 0.5 # Kendall's tau
th <- iTau(tCopula(df = nu), tau) # corresponding parameter
cop <- tCopula(th, dim = d, df = nu) # define copula object
set.seed(271)
U <- rCopula(n, copula = cop)
splom2(U)

## For 'copula' objects
set.seed(271)
splom2(cop, n = n) # same as above

## For 'rotCopula' objects: ---> Examples in rotCopula

## For 'mvdc' objects
mvNN <- mvdc(cop, c("norm", "norm", "exp"),
             list(list(mean = 0, sd = 1), list(mean = 1), list(rate = 2)))
splom2(mvNN, n = n)

Run the code above in your browser using DataLab