## the following example is available in batch through
## demo(gofCopula)
## A two-dimensional data example ----------------------------------
x <- rCopula(200, claytonCopula(3))
(tau. <- cor(x, method="kendall")[1,2]) # around 0.5 -- 0.6
## Does the Gumbel family seem to be a good choice?
thG <- iTau(gumbelCopula(), tau.)
gofCopula(gumbelCopula(thG), x)
# SnC: really s..l..o..w.. --- SnB is *EVEN* slower
gofCopula(gumbelCopula(thG), x, method = "SnC")
## What about the Clayton family?
thC <- iTau(claytonCopula(), tau.)
gofCopula(claytonCopula(thC), x)
gofCopula(claytonCopula(thC), x, method = "AnChisq")
## The same with a different estimation method
gofCopula(gumbelCopula (thG), x, estim.method="itau")
gofCopula(claytonCopula(thC), x, estim.method="itau")
## A three-dimensional example ------------------------------------
x <- rCopula(200, tCopula(c(0.5, 0.6, 0.7), dim = 3, dispstr = "un"))
## Does the Clayton family seem to be a good choice?
gofCopula(gumbelCopula(1, dim = 3), x)
## What about the t copula?
t.copula <- tCopula(rep(0, 3), dim = 3, dispstr = "un", df.fixed=TRUE)
## this is *VERY* slow currentlygofCopula(t.copula, x)
## The same with a different estimation method
gofCopula(gumbelCopula(1, dim = 3), x, estim.method="itau")
gofCopula(t.copula, x, estim.method="itau")
## The same using the multiplier approach
gofCopula(gumbelCopula(1, dim = 3), x, simulation="mult")
gofCopula(t.copula, x, simulation="mult")
Run the code above in your browser using DataLab