serialIndepTest) for multivariate time
  series. The main difference comes from the fact that critical values
  and p-values are obtainted through the bootstrap/permutation
  methodology, since, here, test statistics are not distribution-free.multSerialIndepTest(x, lag.max, m=lag.max+1, N=1000, alpha=0.05,
                    verbose = TRUE, print.every = NULL)m << lag.max+1 especially when lag.max is large.verbose.txtProgressBar."multSerialIndepTest" returns an object of class
  "indepTest" whose attributes are: subsets,
  statistics, critical.values, pvalues,
  fisher.pvalue (a p-value resulting from a combination à la
    Fisher of the subset statistic p-values), tippett.pvalue (a p-value
  resulting from a combination à la Tippett of the subset
  statistic p-values), alpha (global significance level of the
  test), beta (1 - beta is the significance level per statistic),
  global.statistic (value of the global Cramér-von Mises
  statistic derived directly from
  the independence empirical copula process - see In in the last
  reference) and global.statistic.pvalue (corresponding p-value).Deheuvels, P. (1981), A non parametric test for independence, Publ. Inst. Statist. Univ. Paris. 26, 29--50.
  Genest, C. and R
  Ghoudi, K., Kulperger, R., and R
Kojadinovic, I. and Yan, J. (2011), Tests of multivariate serial independence based on a Möbius decomposition of the independence empirical copula process, Annals of the Institute of Statistical Mathematics 63, 347--373.
serialIndepTest,
  indepTest,
  multIndepTest,
  dependogram## A multivariate time series
d <- 2
n <- 100
param <- 0.25
ar <- matrix(0,2*n,d)
ar[1,] <- rnorm(d)
for (i in 2:(2*n))
  ar[i,] <- matrix(param,d,d) %*% ar[i-1,] + rnorm(d)
x <- ar[(n+1):(2*n),]
## Run the test
test <- multSerialIndepTest(x,3)
test
## Display the dependogram
dependogram(test,print=TRUE)Run the code above in your browser using DataLab