Learn R Programming

correctedAUC (version 0.0.3)

AUCest.Rosner: Calculate AUC.c for measurement error based on probit-shift model

Description

Calculate AUC.c for measurement error based on probit-shift model.

Usage

AUCest.Rosner( datFrame, sidVar = "subjID", obsVar = "y", grpVar = "grp", repVar = "myrep", alpha = 0.05)

Arguments

datFrame
a data frame with at least the following columns: y: numerical vector of observations; subjID: vector of subject ids; grp: group indicator: 1 means case; and 0 means conrol; myrep: integer vector indicating replication. should be consecutive positive integer starting from 1.
sidVar
character. variable name for subject id in the data frame datFrame.
obsVar
character. variable name for observations in the data frame datFrame.
grpVar
character. variable name for group indictor in the data frame datFrame.
repVar
character. variable name for replication indictor in the data frame datFrame.
alpha
confidence interval level $100(1-\alpha$%

Value

A list of 9 elements:
AUC.obs
AUC estimated based on the Mann-Whitney statistic.
AUC.c
AUC corrected for measurement error based on the probit-shift model.
ICC.x
intra-class correlation for cases.
ICC.y
intra-class correlation for controls
mu.mle
maximum likelihood estimate of $\mu$ (i.e., the shift between the case distribution and the control distribution after probit transformation)
AUC.obs.low
lower bound of the AUC.obs.
AUC.obs.upp
upper bound of the AUC.obs.
AUC.c.low
lower bound of the AUC.c.
AUC.c.upp
upper bound of the AUC.c.

References

Rosner B, Tworoger S, Qiu W (2015) Correcting AUC for Measurement Error. J Biom Biostat 6:270. doi:10.4172/2155-6180.1000270

Examples

Run this code
  set.seed(1234567)
  tt=genSimDataModelIII(
    nX = 100, 
    nY = 100, 
    mu = 0.25,
    lambda = 0,
    sigma.X2 = 1, 
    sigma.Y2 = 1, 
    sigma.e.X = 1, 
    sigma.e.Y = 1) 

  print(dim(tt$datFrame))
  print(tt$datFrame[1:2,1:3])
  print(tt$AUC.true)

  res = AUCest.Rosner(
    datFrame = tt$datFrame, 
    sidVar = "subjID",
    obsVar = "y",
    grpVar = "grp",
    repVar = "myrep",
    alpha = 0.05)
  print(res)

Run the code above in your browser using DataLab